

Synthesen, Strukturen und Eigenschaften von 2,5-Dihydro-1*H*-1,2,5phosphadiborolen

Pascal Frankhauser, Matthias Drieß, Hans Pritzkow und Walter Siebert*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg

Eingegangen am 6. Dezember 1991

Key Words: 1H-1,2,5-Phosphadiboroles, dihydro- / Metal complexes

Syntheses, Structures, and Properties of 2,5-Dihydro-1H-1,2,5-phosphadiboroles

Cyclocondensation of the (Z)-1,2-bis[chloro(dialkylamino)boryl]ethenes 6a - c and 1,2-bis[chloro(diisopropylamino)boryl]benzene (8a) with the lithium phosphides $Li_2P - C_6H_{5}$, $Li_2P - C_6F_5$, $Li_2P - C_6H_2(tBu)_3$, [LiPH₂ · dme], and P(SiMe₃)₃, yields the 2,5-dihydro-1H-1,2,5-phosphadiboroles 1a-c, 2b, c, 3a-c, 4c, 5c, 9a. Compounds 4c, 5c, 9a are characterized by an X-ray structure analysis. Due to the $B-N \pi$ bond, these derivatives are monomeric with little contribution of B-P π interaction. However, low-temperature ¹H-NMR studies show that the P-inversion barrier is distinct lower (10-15 kcal mol^{-1}) than for PH₃ and organophosphanes (ca. 35 kcal mol^{-1}). This may be a result of favorable $B - P \pi$ interaction in the transition state of the inversion at phosphorus. Reaction of the B-methyl-substituted 1,2-bis(chloromethylboryl)benzene (8b) with P(SiMe₃)₃ gives the 1,2-dihydro-1H-1,2,5-benzophosphadiborole 9b which forms the dimer $(9b)_2$ below 40 °C by an intermolecular B - P acceptor-donor bond. The structure of $(9b)_2$ is

Fünfgliedrige, ungesättigte C2B2P-Verbindungen vom Typ der 2,5-Dihydro-1H-1,2,5-phosphadiborole sind erst seit kurzem bekannt^[1]. Die Heterocyclen 1a - c mit C₂B₂P-Ringgerüst, die zur elektronischen Stabilisierung NR₂-Substituenten am Bor tragen [1a R = Me, 1b R = Et, 1c R =*i*Pr] eignen sich zur Herstellung anderer cyclischer C₂B₂X-Fünfringverbindungen (X = O, S, Se) und zur Übergangsmetall- π -Komplexierung. Die zu 1 a - c analogen C₂B₂X-Heterocyclen mit X = $CR_2^{[2a]}$, S^[2b], NR^[2c] und (NR)₂^[2d] sind bereits beschrieben und haben sich zum Aufbau von Oligodecker-Übergangskomplexen bewährt^[3]. Wir stellen zur näheren Untersuchung des C2B2P-Heterocyclentyps die neuen 2,5-Dihydro-1H-1,2,5-phosphadiborol-Derivate 4c und 5c vor, Röntgenstrukturanalysen vervollständigen die Charakterisierung. Weiterhin werden erstmals die Bor-aminierten und -alkylierten 2,5-Dihydro-1H-1,2,5-benzophosphadiborole 9a, b dargestellt und röntgenstrukturanalytisch untersucht.

Darstellung und Eigenschaften

Zur Synthese der *P*-phenylsubstituierten Derivative $1\mathbf{a}-\mathbf{c}$ werden die (*Z*)-1,2-Bis[chlor(dialkylamino)boryl]ethen-Derivate $6\mathbf{a}-\mathbf{c}$ mit C₆H₅PLi₂ umgesetzt^[1]. Die *P*-Trimethylsilyl-substituierten Derivate **2b**, **c** entstehen in guten Ausbeuten durch Cyclocondensationsreaktionen von **6b**, **c** mit P(SiMe₃) $\mathbf{h}^{[4]}$.

confirmed by an X-ray crystal structure analysis. Treatment of 1c with oxygen, sulfur, or selenium leads to the corresponding 1,2,5-chalcogenadiborole derivatives 10, 11 and 12. By this process, the phenylphosphorus group is eliminated as the pentamer $(C_6H_5-P)_5$ in 25% yield. Reaction of 1c with Me₂BBr gives the Lewis acid-base adduct 13 bearing an $\lambda^3 \sigma^4$ -coordinated phosphorus and one four-coordinated boron atom. π complexation of 1c with the (CO)₃Fe fragment leads to the iron complex 15 (X-ray diffraction analysis). Deprotonation of 3c with MeLi gives the P-Li-substituted phosphadiborole [3c-H|Li which reacts with MeI, Me2SiCl2, Me3SiCl to form the Pmethylated and -silvlated derivatives 14a, 14b, 2c. Reaction of **2b** with one equivalent of MeOH at -78 °C in pentane does not give the expected *P*-unsubstituted compound **3b**. Instead, B-P ring cleavage is observed with formation of $H_2P-SiMe_3$ and (Z)-1,2-bis[(diethylamino)methoxyboryl]ethene.

Chem. Ber. 1992, 125, 1341-1350 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1992 0009-2940/92/0606-1341 \$ 3.50+.25/0

Dabei werden als Nebenprodukte die *P*-unsubstituierten Derivate **3b**, **c** erhalten, die auch gezielt dargestellt wurden^[4]. Das Entstehen dieser Produkte ist vermutlich auf die erhöhte Reaktionstemperatur zurückzuführen.

Die Reaktion von 6c mit P(SiMe₃)₃ im Molverhältnis 2:1 liefert das spiroheterocyclische Tetraborylphosphoniumchlorid $7c^{[5]}$.

2b ist eine farblose ölige Flüssigkeit mit unangenehmem Geruch, die unzersetzt destilliert, 2c ein farbloser kristalliner Feststoff, der ebenfalls unzersetzt destilliert werden kann. Beide Derivate sind sauerstoff- und feuchtigkeitsempfindlich.

Die *P*-unsubstituierten Derivate $3\mathbf{a} - \mathbf{c}$ sind analog **2b**, **c** aus Lithium-dihydrogenphosphanid [LiPH₂·DME] und $6\mathbf{a} - \mathbf{c}$ zugänglich^[4].

Wichtig für optimale Ausbeuten an 3a-c ist eine Reaktionstemperatur um 0°C, da bei 20°C unter heftiger PH3-Entwicklung vermehrt Nebenprodukte gebildet werden. So entstehen bei der Darstellung von 3a geringe Mengen 1,4-Bis(dimethylamino)-1,4-diboracyclohexa-2,5-dien, welches ebenfalls bei der Umsetzung von 6a mit 1,2-Dikalium-1,2di-tert-butyldiphosphandiid auftritt^[6]. 3a und 3c sind farblose kristalline Festkörper, während 3b ein farbloses Öl ist, das sich unzersetzt destillieren läßt. Als weitere Verbindungen werden das Pentafluorphenyl-substituierte 4c und das P-(2,4,6-Tri-tert-butylphenyl)-substituierte Derivat 5c dargestellt und hinsichtlich ihrer NMR-spektroskopischen und strukturellen Daten mit 1c verglichen (siehe NMR-Spektren und Kristallstrukturanalysen). 4c entsteht aus (Pentafluorphenyl)phosphan C₆F₅PH₂ und 6c in Gegenwart der Hilfsbase NaN(SiMe₃)₂ als farbloser Feststoff. Das sterisch aufwendige 5c ist aus der Umsetzung von 6c mit Lithium-(2,4,6tri-tert-butylphenyl)phosphanid und NaN(SiMe₃)₂ als Hilfsbase erhältlich.

5c kristallisiert in orangegelben, regelmäßig sechseckigen Plättchen, die in üblichen aprotischen organischen Solvenzien gut löslich sind. In aromatischen Lösungsmitteln tritt nach einigen Tagen bei 20 °C Zersetzung zu $C_6H_2(tBu)_3PH_2$ und nicht charakterisierten borhaltigen Verbindungen auf (³¹P- und ¹¹B-NMR-Spektren). 5c ist in der Reihe der dargestellten C_2B_2P -Heterocyclen als einziges leuchtend orangegelb, alle anderen Derivate sind farblos oder blaßgelb. Die intensive Farbe von **5c**, die sowohl in Lösung als auch im Feststoff auftritt, ist vermutlich auf eine geringere Energiebarriere für den HOMO-LUMO-Übergang $n \rightarrow \pi^*$ zurückzuführen. Zur Erklärung dieses Phänomens ist die Koordinationsgeometrie am $\lambda^3 \sigma^3$ -P-Atom in **5c** relevant. Üblicherweise trifft man eine pyramidale Koordinationsgeometrie am P-Atom an, wie es auch in **1c** und **4c** der Fall ist, während **5c** im Kristall eine deutlich abgeflachte Substituentenanordnung aufweist (siehe Kristallstrukturanalysen).

Die Synthese des *P*-unsubstituierten Benzophosphadiborols **9a** erfolgt durch Cyclisierung des *o*-Diborylbenzols **8a** mit zwei Äquivalenten [LiPH₂ DME] mit 57% Ausbeute, wobei **9a** als farbloser Feststoff gewonnen wird.

Zur Darstellung des *B*-methylierten Derivates **9b** wird **8b** mit $P(SiMe_3)_3$ cyclisiert. Die Reaktion führt mit 6% Ausbeute zum dimeren (**9b**)₂, das in Form intensiv gelber, würfelförmiger Kristalle erhalten wird. Im Gegensatz zu **9a** ist **9b** nur schlecht in unpolaren aprotischen Lösungsmitteln löslich.

Reaktionen

1c reagiert in Toluol mit getrockneter Luft zum Oxadiborol 10, das sich durch fraktionierte Sublimation als farbund geruchloser Feststoff isolieren läßt. Der Phenylphosphor von 1c reagiert mit 25% Ausbeute zu $(C_6H_5P)_5$.

In analogen Umsetzungen von 1 c mit Schwefel oder Selen entstehen die 2,5-Dihydro-1,2,5-chalkogenadiborole 11 und 12 als farblose Feststoffe in guter Ausbeute. Bei allen Umsetzungen von 1 c mit O₂, S₈ oder Se₈ konnte trotz ¹¹B- und ³¹P-NMR-Kontrolle kein Hinweis auf Zwischenprodukte mit einer B-X-P- bzw. B-X-P(X)- (X = O, S, Se) Seguenz erhalten werden.

Als Lewis-Base reagiert 1c über das freie Elektronenpaar am Phosphor mit Me_2BBr unter Bildung von 13, das durch Kristallisation aus Toluol analysenrein erhalten wird. 14 ist in CHCl₃ sehr gut, in aromatischen Solvenzien gut und in Petrolether nicht löslich.

3c reagiert mit MeLi in Et₂O zum hellgelben, festen *P*-Lithium-substituierten [3c-H]Li. Derivatisierungsversuche ergänzen die NMR-spektroskopische Charakterisierung. [3c-H]Li reagiert mit einer verdünnten Lösung von MeI in *n*-Pentan bei -78° C unter Bildung von 14a, das in zitronengelben, quaderförmigen Kristallen erhalten wird. Die Silylierung von [3c-H]Li mit einer äquimolaren Menge Me₂SiCl₂ liefert mit 76% Ausbeute 14b als schwach gelben, extrem luftempfindlichen Feststoff. Die Derivatisierung von [3c-H]Li mit Me₃SiCl ergibt mit 78% Ausbeute das bereits auf anderem Wege dargestellte 2c.

Die äquimolare Umsetzung von **2b** mit MeOH bei $-78 \,^{\circ}$ C in *n*-Pentan sollte zeigen, ob unter Spaltung der P-Si-Bindung das *P*-unsubstituierte **3b** erhalten wird. Nach destillativer Aufarbeitung des öligen Rohproduktes erhält man H₂P(SiMe₃) (4%), (Z)-1,2-Bis[(diethylamino)methoxyboryl]ethen (48%) und **2b** (35%). Offensichtlich wird nicht die P-Si-, sondern die B-P-Bindung gespalten, was auf die hohe thermodynamische Stabilität der entstehenden B-O-Bindung zurückzuführen ist.

Die Reaktion von 1c mit Fe₂(CO)₉ in THF ergibt den Halbsandwichkomplex 15, in dem 1c als η^3 - π -gebundener Ligand an das Metallfragment gebunden ist. 15 bildet bernsteinfarbene Kristalle, die in gängigen organischen Solvenzien gut löslich sind.

 $H \xrightarrow{H}_{B} \xrightarrow{N^{i}Pr_{2}}_{N^{i}Pr_{2}} 15$

Spektren und Konstitution

¹H-NMR-Spektren: Hinsichtlich der ¹H-NMR-Spektren der P-Aryl-Derivate 1a - c, 4c und 5c nimmt 5c eine Sonderstellung ein. Der sterisch sehr anspruchsvolle 2,4,6-Tritert-butylphenyl-Substituent führt aufgrund seines Platzbedarfs zu einer Änderung der Koordinationsgeometrie am λ^3 , σ^3 -P Atom. ¹H-NMR-spektroskopisch dokumentiert sich dies im Betrag der ${}^{3}J_{PH}$ -Kopplungskonstanten. Entsprechend der Röntgenstrukturanalyse von 5c befindet sich das P-Atom an der Spitze einer stark abgeflachten Pyramide (Summe der Bindungswinkel am P-Atom 344.4°). Die gedachte Orientierung des freien Elektronenpaares am Phosphor und der höhere s-Anteil in den σ-Bindungen erlauben stärkere Spin-Spin-Wechselwirkungen mit den Ringmethinprotonen als in den analog substituierten Verbindungen 1c und 4c mit der üblichen pyramidalen Koordinationsgeometrie am Phosphor, womit sich der relativ hohe Betrag von ${}^{3}J_{PH}$ in 5c (9.9 Hz) im Vergleich zu 1b, c (6.0, 6.2 Hz) und 4c (6.4 Hz) erklärt^[7]. Insgesamt variieren die Beträge von ${}^{3}J_{PH}$ der ungesättigten C₂B₂P-Derivate von <1 Hz (**3a**) bis 9.9 Hz (5c).

Der dynamische Effekt der P-Inversion in C₂B₂P-Derivaten läßt sich in den ¹H-NMR-Tieftemperaturspektren wegen des vorliegenden prochiralen Zentrums am Methinkohlenstoff (α -C-Atom) der Diisopropylamino-Substituenten gut erkennen. So zeigt 1c bei $T < 5^{\circ}$ C (200 MHz) im Rahmen der ¹H-NMR-Zeitskala eine starre, pyramidale Substituentenanordnung am P-Atom, bei $T > 5^{\circ}$ C erfolgt die P-Inversion so rasch, daß eine im Rahmen der NMR-Zeitskala planare Koordinationsgeometrie am P-Atom vorliegt. Bei gesättigten C₂B₂P-Heterocyclen beobachtet man auch bei -90° C (200 MHz) eine rasche P-Inversion^[8]. Temperaturabhängige ¹H-NMR-Spektren finden sich ebenfalls beim *P*-unsubstituierten 3c, dem *P*-Aryl-substituierten 4c sowie dem Benzoderivat 9a.

Aus der Koaleszenztemperatur läßt sich die Energiebarriere für die P-Inversion abschätzen^[9]. Sie beträgt für 1c, 3c, 4c und 9a 10–15 kcal/mol und liegt somit deutlich unterhalb der für Organophosphane $(35-29 \text{ kcal/mol})^{[10]}$. Im Gegensatz dazu ist das ¹H-NMR-Spektrum von 5c im Bereich von – 80 bis 100°C temperaturinvariant. Die Tatsache, daß auch bei –80°C keine Hinweise auf eine starre pyramidale Konfiguration am P-Atom gefunden werden, zeigt, daß am P-Atom eine im Rahmen der NMR-Zeitskala planare Koordinationsgeometrie vorliegt. Dieser Befund steht im Einklang mit den auch im Festzustand aufgeweiteten Bindungswinkeln am Phosphor (Winkelsumme 344.4°).

Das ¹H-NMR-Spektrum von (9b)₂ zeigt ebenfalls eine Temperaturabhängigkeit. Grund hierfür ist ein Monomer/ Dimer-Gleichgewicht:

Das Tieftemperaturspektrum (295 K) weist ein Singulett für die Methylprotonen der Silylgruppe auf. Ferner ein Signal für die *B*-Methylgruppe des vierfach koordinierten Bors, das durch ${}^{3}J_{PH}$ -Kopplungen zum Triplett aufspaltet. Die *B*-Methylgruppe des dreifach koordinierten Boratoms erscheint bei tieferem Feld als Singulett. Beide Signale sind durch die Nachbarschaft zum Bor relaxationsverbreitert. Die aromatischen Protonen ergeben ein Multiplett im Arylbereich. Das Hochtemperatur-NMR-Spektrum (348 K) weist für die Methylgruppen des Silylsubstituenten ein Singulett auf, für die Methylsubstituenten am Bor ein verbreitertes Singulett. Die Protonen des Aromaten zeigen ein *ortho*-Substitutionsmuster. Diese Signale werden **9b** zugeordnet.

¹³C-NMR-Spektren: In den ¹³C{¹H}-NMR-Spektren von 1-5 und 9a treten wie in den ¹H-NMR-Spektren weitreichende Phosphorkopplungen auf. Die α -C-Atome der Diisopropylamino-Substituenten können aufgrund der gehinderten Rotation um die B-N-Bindungsachse E- bzw. Zständig zum Phosphor sein, woraus verschiedene ³J_{PC}-Werte resultieren. Unter der Voraussetzung, daß wie bei Alkenen die Relation $J_E > J_Z$ gilt, lassen sich die Signale der N-Methinkohlenstoffe zuordnen. Für die am Bor gebundenen ¹³C-Kerne werden relaxationsverbreiterte Signale gefunden.

Das ${}^{13}C{{}^{1}H}-NMR-Spektrum von (9b)_2$ ergibt ein Singulett für die C-Atome der SiMe₃-Gruppen. Die *B*-Methylgruppen liefern dagegen zwei verbreiterte Signale. Für die tertiären C-Atome des aromatischen Ringes finden sich vier verbreiterte Signale.

¹¹B- und ³¹P-NMR Spektren: Die δ^{11} B-Werte von 1–5 und 9a liegen im erwarteten Bereich für C₂B₂P-Derivate^[4]. (9b)₂ weist ein vierfach koordiniertes Boratom mit einer chemischen Verschiebung $\delta = -3.6$ auf sowie ein dreifach koordiniertes Boratom mit einem stark verbreiterten Resonanzsignal bei $\delta = 98$ (Halbhöhenbreite 1000 Hz).

Die ${}^{31}P{{}^{1}H}$ -NMR-Spektren zeigen ${}^{11}B$ -relaxationsverbreiterte Singuletts.

Massenspektren: In den EI-Massenspektren von 1-5 und 9a, b werden die Molekülpeaks gefunden, wobei die berechnete und die gefundene Isotopenverteilung gut übereinstimmen. Charakteristische Fragment-Ionen entstehen durch Abspaltung von Alkylgruppen aus den Dialkylaminosubstituenten.

Kristallstrukturanalysen von 4c, 5c, 9a, b und 15

Die vier Verbindungen 1c, 4c, 5c und 9a tragen Diisopropylaminogruppen am Bor und unterscheiden sich durch den Substituenten am Phosphor, im Falle von 9a außerdem durch den an die C=C-Doppelbindung ankondensierten Benzoring. Ein Vergleich zeigt, daß der Substituent am Phosphor keinen größeren Einfluß auf die Länge der P-B-Bindung (1.930-1.949 Å) und auf den B-P-B-Winkel (88.8-92.9°) hat. Die beiden Winkel B-P-R zeigen nur für 5c eine Aufweitung (113.2 und 125.7°) gegenüber 103.1-109.6° in 1c, 4c und 9a. Dies und die asymmetrische Lage des Phenylrings läßt sich durch den Platzbedarf der ortho-ständigen tert-Butylgruppen am Phenylring erklären. Aufgrund der Geometrie am Phosphoratom läßt sich eine starke π -Wechselwirkung zwischen Bor und Phosphor^[11] ausschließen. Dies ist auf die effektivere π -Bindung zwischen Bor und Stickstoff zurückzuführen, durch die die Akzeptorfähigkeit des Boratoms stark herabgesetzt wird. Bor und Stickstoff sind nahezu planar koordiniert, und die beiden Ebenen durch die jeweiligen Substituenten sind praktisch coplanar.

Der Benzoring in **9a** führt zu einer deutlichen Verlängerung der C=C-Doppelbindung im Fünfring (1.421 gegenüber 1.329–1.344 Å) und einer geringen Aufweitung der B-C-Bindung (1.588 gegenüber 1.557–1.572 Å). Der Fünfring ist nicht planar, sondern entlang der Linie B1–B3 abgewinkelt (17.3° in 1c, 24.9° in 4c, 14.4° in 5c und 37.0° in **9a**).

Abb. 1. Molekülstruktur von 4c; Ausgewählte Abstände [Å] und Winkel [°]: P-B 1.945, 1.946(6), B-N 1.388, 1.393(6), B-C 1.554, 1.552(8), C4-C5 1.338(7), P-C31 1.846(5); B1-P2-B3 89.4(2), B1(3)-P2-C31 105.8, 106.3(2)

Abb. 2. Molekülstruktur von 5c; Ausgewählte Abstände [Å] und Winkel [°]: P-B 1.937, 1.940(6), B-N 1.388, 1.389(8), B-C 1.565, 1.572(7), C4-C5 1.329(9), P-C6 1.867(4); B1-P2-B3 92.9(2), B1-P2-C6 113.2(2), B3-P2-C6 125.7(2)

 $(9b)_2$, in dem die Boratome methylsubstituiert sind, bildet über zwei intermolekulare B-P-Bindungen ein zentrosymmetrisches Dimeres. Die beiden Boratome im Fünfring werden dadurch unterschiedlich koordiniert: das eine trigonal-

(2.4°). Der Winkel zwischen dem Fünfring und dem Vierring

Abb. 3. Molekülstruktur von **9a**; Ausgewählte Abstände [Å] und Winkel [°]: P−B 1.940, 1.930(7), B−N 1.375, 1.410(8), B−C 1.587, 1.590(9), C4−C5 1.421(8); B1−P2−B3 89.0(3)

Abb. 4. Molekülstruktur von $(9b)_{2i}$, Ausgewählte Abstände [Å] und Winkel [°]: P2-B1 2.005(1), P2-B1' 2.066(1), P2-B3 1.925(1), P2-Si1 2.253(1), B1-C5 1.606(2), B3-C4 1.539(2), C4-C5 1.412(2); B1-P2-B3 94.7(1), B1-P2-B1' 93.1(1), B1'-P2-B3 107.8(1)

Im Fe-Komplex 15 nimmt die Faltung des Ringes von 17.3° im freien Liganden auf 29.6° zu, wodurch sich die Boratome vom Fe-Atom entfernen. Die Abstände Fe-B [2.553, 2.573(2) Å] sind deutlich länger als in Diborylkomplexen des Eisens, so daß man nur von einer schwachen Fe-B-Wechselwirkung ausgehen kann. Dies ist darauf zu-

rückzuführen, daß die Akzeptorfähigkeit der Boratome durch die Aminogruppen stark vermindert ist. Die drei Carbonylgruppen sind annähernd *trans*-ständig zu den Ringatomen P2, C4 und C5 angeordnet. Die gefundene Struktur stimmt im Rahmen der Meßgenauigkeit mit den Ergebnissen für den Fe-Komplex von 1,1'-Bi(1H-1,2,5-phosphadiborol) überein^[4].

Abb. 5. Molekülstruktur von 15; Ausgewählte Abstände [Å] und Winkel [°]: Fe1-B1(3) 2.553, 2.571(2), Fe1-P2 2.315(1), Fe1-C4(5) 2.122, 2.117(2), Fe1-C(O) 1.761-1.772(3), P2-B1(3) 1.914, 1.909(2), B-C 1.529, 1.525(4), C4-C5 1.429(3), P2-C6 1.804(2); B1-P2-B3 100.1(1), B1(3)-P2-C6 129.2, 129.0(1)

Experimenteller Teil

NMR: Bruker AC-200 (¹H, ¹³C), Jeol-FX 90Q (¹H, ¹¹B, ³¹P), Jeol-JNM GX 400 (⁷Li); Standards: TMS (ext.), $[Et_2O - BF_3]$, (ext.), 85% H₃PO₄ (ext.), 15% LiBr in D₂O (ext.). – IR: Perkin-Elmer 983G. – MS: MAT CH7 und MAT 8230 70eV. – Alle Versuche wurden unter N₂-Schutz durchgeführt. – Schmelzpunkte sind unkorrigiert. – PE = Petrolether.

2.5-Bis(dimethylamino)-2.5-dihydro-1-phenyl-1H-1,2,5-phosphadiborol (1a): Zur Suspension von 600 mg (4.9 mmol) C₆H₃PLi₂ in 20 ml PE (40-60 °C) wird die Lösung von 830 mg (4.0 mmol) **6a** in 20 ml PE (40-60 °C) gegeben. Es wird 2 d gerührt, der entstandene Niederschlag (LiCl) abgefiltert und das Lösungsmittel i. Vak. entfernt. Das Rohprodukt wird bei 43 °C/10⁻³ Torr sublimiert: 700 mg (2.86 mmol, 71%) farblose Kristalle, Schmp. 97-99 °C. – ¹H-NMR (90 MHz, C₆D₆): δ = 3.08 (s, 6, CH₃), 3.36 (s, 6, CH₃), 7.05-7.44 (m, 7, =CH und C₆H₅). – ¹³C{¹H}-NMR (C₆D₆): δ = 52.70 (d, CH₃, ³J_{PC} = 4.5 Hz), 55.50 (d, ³J_{PC} = 14.4 Hz), 127.30 (d, C₆H₅, J_{PC} = 15.0 Hz), 138.40 (d, C₆H₅, J_{PC} = 15.0 Hz), 140.80 (d, C₆H₅, J_{PC} = 13.8 Hz), 159.5 (br, BC). – ¹¹B-NMR (C₆D₆): δ = 48.6 (s). – ³¹P{¹H}-NMR (C₆D₆): δ = -124.0 (s). – MS (EI): m/z (%) = 245 (10) [M⁺], 230 (8) [M⁺ – Me], 108 (37) [C₆H₅P⁺], 44 (100) [NMe₂⁺].

 $\begin{array}{r} C_{12}H_{19}B_2N_2P \ (243.9) \\ Gef. \ C \ 59.10 \ H \ 7.85 \ N \ 11.49 \ P \ 12.70 \\ Gef. \ C \ 58.66 \ H \ 8.09 \ N \ 11.30 \ P \ 12.60 \end{array}$

2.5-Bis (diethylamino)-2.5-dihydro-1-phenyl-1H-1,2,5-phosphadiborol (1b): Zur Suspension von 1.22 g (10.0 mmol) $C_6H_5PLi_2$ in 10 ml Toluol wird die Lösung von 2.63 g (10.0 mmol) 6b in 20 ml Toluol gegeben. Es wird 2 h unter Rückfluß erhitzt und der entstandene Niederschlag (LiCl) bei Raumtemp. abgefiltert. Nach Entfernen des Toluols i. Vak. wird destilliert: 2.49 g (8.3 mmol, 83%) farbioses Öl, Sdp. $69 \circ C/5 \cdot 10^{-3}$ Torr. – ¹H-NMR (90 MHz, C₆D₆): $\delta = 1.52$ (br. t, 12, CH₃, ³J_{HH} = 7.0 Hz), 3.50 (q, 4, NCH₂, ³J_{HH} = 7.0 Hz), 3.83 (dq, 4, NCH₂, ⁴J_{PH} = 1.4, ³J_{HH} = 7.0 Hz), 7.00 – 7.45 (m, 5, C₆H₅), 7.70 (d, 2, =CH, ³J_{PH} = 6.0 Hz). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 19.17$ (s, CH₃), 22.40 (s, CH₃), 49.60 (d, NC, ³J_{PC} = 4.6 Hz), 54.40 (d, ³J_{PC} = 12.7 Hz), 127.27 (d, C₆H₅, J_{PC} = 15.0 Hz), 138.05 (d, C₆H₅, J_{PC} = 13.0 Hz), 141.00 (d, C₆H₅, J_{PC} = 14.0 Hz), 161.5 (br, BC). – ¹¹B-NMR (C₆D₆): $\delta = 46.8$ (s). – ³¹P{¹H}-NMR (C₆D₆): $\delta = -119.0$ (s). – MS (EI): m/z (%) = 300 (48) [M⁺], 271 (20) [M⁺ – Et], 108 (36) [C₆H₅P⁺], 29 (100) [Et⁺].

2,5-Bis(diisopropylamino)-2,5-dihydro-1-phenyl-1H-1,2,5-phosphadiborol (1c): Zur Suspension von 190 mg (1.6 mmol) C₆H₅PLi₂ in 10 ml Toluol wird die Lösung von 500 mg (1.6 mmol) 6c in 20 ml Toluol gegeben. Es wird 2 h unter Rückfluß erhitzt, der entstandene Niederschlag (LiCl) abgefiltert und die hellgelbe Lösung bei -30° C zur Kristallisation belassen. Das Rohprodukt wird bei 96°C/10⁻³ Torr sublimiert und aus CH2Cl2 bei -78 °C umkristallisiert: 470 mg (1.3 mmol, 84%) farblose Kristalle, Schmp. 133-134 °C. - ¹H-NMR (200 MHz, $C_6 D_{6}$, 300 K): $\delta = 0.65$ (br, 12, CH₃), 1.21 (d, 12, CH₃, ${}^{3}J_{HH} = 7.0$ Hz), 2.90 (dsept, 2, NCH, ${}^{4}J_{PH} = 2.1$, ${}^{3}J_{HH} =$ 7.0 Hz), 4.09 (dsept, 2, NCH, ${}^{4}J_{PH} = 4.0, {}^{3}J_{HH} = 7.0$ Hz), 6.99 – 7.54 (m, 5, C₆H₅), 7.70 (d, 2, =CH, ${}^{3}J_{PH} = 6.2$ Hz). $-{}^{13}C{}^{1}H$ -NMR (C_6D_6) : $\delta = 21.17$ (s, CH₃), 25.83 (s, CH₃), 45.70 (d, NC, ${}^3J_{PC} =$ 3.0 Hz), 56.56 (d, NC, ${}^{3}J_{PC} = 13.0$ Hz), 128.35 (d, C₆H₅, $J_{PC} =$ 15.0 Hz), 138.05 (d, C₆H₅, J_{PC} = 13.0 Hz), 140.38 (d, C₆H₅, J_{PC} = 13.5 Hz), 160.0 (br, BC). - ¹¹B-NMR (C₆D₆): $\delta = 47.7$ (s). - ${}^{31}P{}^{1}H{}-NMR (C_6D_6): \delta = -124.6 (s). - MS (EI): m/z (\%) = 356$ (23) $[M^+]$, 313 (56) $[M^+ - Pr]$, 249 (36) $[M^+ - C_6H_4P]$, 44 (100) $[C_{3}H_{8}^{+}].$

 $\begin{array}{rl} C_{20}H_{35}B_2N_2P \ (356.1) & \text{Ber. C } 67.49 \ H \ 9.85 \ P \ 8.71 \\ & \text{Gef. C } 67.29 \ H \ 9.81 \ P \ 8.52 \end{array}$

2,5-Bis(dimethylamino)-2,5-dihydro-1H-1,2,5-phosphadiborol (3a): Zu 2.57 g (19.8 mol) [LiPH₂·DME] in 50 ml PE (60-75 °C) wird bei -78 °C langsam die Lösung von 2.05 g (9.9 mmol) **6a** in 10 ml PE getropft, danach auf 0 °C erwärmt. Nach beendeter PH₃-Entwicklung wird noch 1 h bei Raumtemp. gerührt, dann LiCl abfiltriert und die Lösung auf 10 ml eingeengt. Bei - 30 °C kristallisiert das Rohprodukt aus, das bei 40 °C/10⁻² Torr sublimiert wird: 800 mg (4.76 mmol, 48%) farblose Kristalle, Schmp. 93-94 °C. -¹H-NMR (200 MHz, C₆D₆): $\delta = 2.07$ (d, 1, PH, ¹J_{PH} = 181.7 Hz), 3.05 (s, 6, CH₃), 3.19 (s, 6, CH₃), 7.29 (br, 2, = CH). - ¹³C{¹H}-NMR (C₆D₆): $\delta = 47.75$ (s, CH₃), 49.97 (d, CH₃, ³J_{PC} = 2.8 Hz), 158.8 (br, BC). - ¹¹B-NMR (C₆D₆): $\delta = 47.5$ (s). - ³¹P{¹H}-NMR (C₆D₆): $\delta = -227.6$ (s). - MS (EI): m/z (%) = 168 (70) [M⁺], 153 (20) [M⁺ - Me], 124 (17) [M⁺ - NMe₂], 44 (100) [NMe₂⁺]. C₆H₁₅B₂N₂P (167.8) Ber. C 42.95 H 8.94 P 18.47

Gef. C 43.30 H 9.12 P 18.20

Die Mutterlauge wird destilliert, wobei man bei $40^{\circ}C/10^{-1}$ Torr 90 mg (0.55 mmol, 11%) 1,4-Bis(dimethylamino)-1,4-diboracyclohexa-2,5-dien erhält.

2,5-Bis(diisopropylamino)-2,5-dihydro-1-(pentafluorphenyl)-1H-1,2,5-phosphadiborol (4c): Zu einer Lösung von 0.90 g (4.5 mmol) C₃F₃PH₂ und 1.46 g (4.5 mmol) 6c in 100 ml Toluol wird eine Lösung von 1.56 g (9.0 mmol) NaN(SiMe₃)₂ in 50 ml Toluol bei -78 °C getropft. Dann wird 12 h bei Raumtemp. gerührt, und der entstandene Niederschlag (NaCl) und das Toluol (i. Vak.) werden entfernt. Zur weiteren Reinigung wird das Rohprodukt bei 120 °C/ 10^{-3} Torr sublimiert und aus *n*-Pentan bei -78 °C umkristallisiert: 1.3 g (2.9 mmol, 64%) farblose Kristalle, Schmp. 151 °C. - ¹H-NMR (200 MHz, [D₈]Toluol, 383 K): $\delta = 0.86$ (d, 12, CH₃, $^{3}J_{HH} =$ 6.6 Hz), 1.35 (d, 12, CH₃, $^{3}J_{HH} = 6.9$ Hz), 3.20 (sept, 2, NCH, $^{3}J_{HH} =$ 6.9 Hz), 3.81 (dsept, 2, NCH, $^{4}J_{PH} = 3.0$, $^{3}J_{HH} = 6.6$ Hz), 7.70 (br, 2, =CH). $-{}^{13}C{}^{11}H{}$ -NMR (C₆D₆): $\delta = 20.51$ (s, CH₃), 21.62 (s, CH₃), 25.58 (s, CH₃), 45.96 (d, NC, ${}^{3}J_{PC} = 3.4$ Hz), 57.17 (d, NC, ${}^{3}J_{PC} = 12.7$ Hz), 158 (br, NC). $-{}^{11}B$ -NMR ([D₈]Toluol): $\delta = 48.0$ (s). $-{}^{31}P{}^{1}H{}$ -NMR ([D₈]Toluol): $\delta = -137.8$ (s). $-{}^{19}F{}^{1}H{}$ -NMR ([D₈]Toluol): $\delta = -126$ (m), -157 (m), -164 (m). - MS (EI): m/z (%) = 446 (4) [M⁺], 403 (10) [M⁺ - Pr], 249 (30) [M⁺ - C₆F₅P + 1], 44 (100) [C₃H₈⁺].

 $C_{20}H_{30}B_2F_5N_2P$ (446.0) Ber. C 53.85 H 6.77 Gef. C 54.18 H 7.24

2,5-Bis(diisopropylamino)-2,5-dihydro-1-(2,4,6-tri-tert-butylphenyl)-1H-1,2,5-phosphadiborol (5c): Zu einer Lösung von 3.0 g (8.4 mmol) C₆H₂(tBu)₃PH₂ in 50 ml THF werden 3.5 ml 2.5 M nBuLi (8.5 mmol) bei -78°C getropft. Nach Entfernen des Kühlbades wird eine Lösung von 2.67 g 6c in n-Hexan bei ca. - 50°C zugetropft. Es wird 1.5 h gerührt, dann 4 h unter Rückfluß erhitzt, der entstandene Niederschlag (LiCl) abfiltriert und die gelbe Lösung i. Vak. vom Lösungsmittel befreit. Zur vollständigen Umsetzung wird das Rohprodukt in 20 ml Toluol gelöst, bei 0°C mit einer Lösung von 1.54 g (8.4 mmol) NaN(SiMe₃)₂ in 50 ml Toluol versetzt und 5 h unter Rückfluß erhitzt. Nach Entfernen des Lösungsmittels i. Vak. wird der Rückstand in n-Pentan aufgenommen, Ungelöstes abgefiltert und bei 5°C zur Kristallisation belassen: 3.5 g (6.7 mmol, 79%) orangegelbe, regelmäßig sechseckige Kristalle, Schmp. 160° C. - ¹H-NMR (200 MHz, C₆D₆): $\delta = 0.87$ (d, 12, CH₃, ³J_{HH} = 7.0 Hz), 1.30 (s, 9, *p*-CMe₃), 1.31 (d, 12, CH₃, ${}^{3}J_{HH} = 6.5$ Hz), 1.80 (s, 18, o-CMe₃), 3.10 (dsept, 2, NCH, ${}^{4}J_{PH} = 2.7$, ${}^{3}J_{HH} = 6.5$ Hz), 3.60 (sept, 2, NCH, ${}^{3}J_{HH} = 7.0$ Hz), 7.63 (d, 2, *m*-H, ${}^{4}J_{PH} = 2.2$ Hz), 7.63 (d, 2, =CH, ${}^{3}J_{PH} = 9.9$ Hz). $- {}^{13}C{}^{1}H{-NMR}$ (C₆D₆): $\delta =$ 22.90 (s, CH₃), 26.09 (s, CH₃), 31.36 (d, *p*-CMe₃, ${}^{6}J_{PC} = 18.0$ Hz), 34.65 (d, o-CMe₃, ${}^{4}J_{PC} = 5.0$ Hz), 39.91 (s, p-CMe₃), 39.87 (s, o-CMe₃), 45.54 (d, NC, ${}^{3}J_{PC} = 5.0$ Hz), 54.78 (d, NC, ${}^{3}J_{PC} = 7.5$ Hz), 123.37 (d, *m*-C, ${}^{3}J_{PC} = 7.8$ Hz), 130.55 (d, *ipso*-C, ${}^{1}J_{PC} = 15.4$ Hz), 148.96 (d, *p*-C, ${}^{4}J_{PC} = 2.4$ Hz), 151.0 (br, BC), 158.54 (d, *o*-C, ${}^{2}J_{PC} =$ 7.3 Hz). $-{}^{11}$ B-NMR (C₆D₆): $\delta = 34.8$ (s). $-{}^{31}$ P{ 1 H}-NMR (C₆D₆): $\delta = -126.9$ (s). - MS (EI): m/z (%) = 524 (65) [M⁺], 57 (89) $[C_4H_9^+]$, 44 (100) $[C_3H_8^+]$.

1,3-Bis(diisopropylamino)-2,3-dihydro-1H-2,1,3-benzophosphadiborol (9a): 4.22 g (32.4 mmol) [LiPH₂·DME] und 6.00 g 8a (16.2 mmol) werden in 100 ml Toluol bei -78°C zusammengegeben, anschließend wird 4 h unter Rückfluß erhitzt. Nach Umlösen in n-Hexan wird LiCl abgefiltert und die Lösung bei - 30°C zur Kristallisation belassen: 3.05 g (9.2 mmol, 57%) farblose Kristalle, Schmp. 140 °C. $- {}^{1}$ H-NMR (200 MHz, [D₈]Toluol, 333 K): $\delta =$ 1.06 (d, 12, CH₃, ${}^{3}J_{HH} = 6.7$ Hz), 1.42 (d, 12, CH₃, ${}^{3}J_{HH} = 6.8$ Hz), 3.13 (d, 1, PH, ${}^{1}J_{PH} = 206.0$ Hz), 3.40 (sept, 2, NCH, ${}^{3}J_{HH} =$ 6.8 Hz), 4.59 (sept, 2, NCH, ${}^{3}J_{\rm HH} = 6.7$ Hz), 7.1 – 7.2 (m, 2, aromat. H), 7.6 – 7.7 (m, 2, aromat. H). – ${}^{13}C{}^{1}H{}$ -NMR (C₆D₆): $\delta = 22.21$ (s, CH₃), 24.34 (s, CH₃), 46.53 (s, NC), 52.20 (d, NC, ${}^{3}J_{PC} = 4.0$ Hz), 128.20 (d, o-C, ${}^{3}J_{PC} = 1.0$ Hz), 131.12 (d, m-C, ${}^{4}J_{PC} = 2.5$ Hz), 154.5 (br, BC). $-{}^{11}$ B-NMR (C₆D₆): $\delta = 47.4$ (s). $-{}^{31}$ P{¹H}-NMR $(C_6 D_6): \delta = -154.4$ (s). -MS (EI): m/z (%) $= 330(16) [M^+], 315$ $(12) [M^+ - Me], 299 (100) [M^+ - 2Me - 1H], 287 (35) [M^+ - 2Me]$ Pr].

$\begin{array}{c} C_{18}H_{33}B_2N_2P \ (330.0) \\ Gef. \ C \ 65.50 \ H \ 10.07 \ N \ 8.48 \ P \ 9.38 \\ Gef. \ C \ 65.63 \ H \ 10.08 \ N \ 8.56 \ P \ 9.22 \end{array}$

2,3-Dihydro-1,3-dimethyl-2-(trimethylsilyl)-1H-2,1,3-benzophosphadiborol (9b): Zu 5.08 g (25.5 mmol) in 30 ml *n*-Hexan wird bei -30° C eine Lösung von 6.38 g (25.5 mmol) P(SiMe₃)₃ in 20 ml *n*-Hexan getropft. Nach Erwärmen wird 1 h unter Rückfluß erhitzt, wobei sich der entstandene weiße Niederschlag auflöst. Die klare gelbe Lösung wird i. Vak. vom Lösungsmittel befreit und das Rohprodukt durch Kristallisation aus *n*-Hexan/Toluol gereinigt: 360 mg (0.77 mmol, 6%) gelbe Kristalle, Schmp. 147°C. – ¹H-NMR (200 MHz, C₆D₆, 348 K): $\delta = -0.05$ (s, 9, SiMe₃), 1.05 (s, 6), 7.23-7.28 (m, 2, aromat. H), 7.82-7.86 (m, 2, aromat. H). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 0.55$ (s, SiMe₃), 6.5 (br, BCH₃), 10.0 (br, BCH₃), 125.6 (br, aromat. C), 132.3 (br, aromat. C), 133.0 (br, aromat. C), 133.8 (br, aromat. C). – ¹¹B-NMR (C₆D₆): $\delta = -3.6$ (s), 98 (s). – ³¹P{¹H}-NMR (C₆D₆): $\delta = -115.0$ (s). – MS (EI): *m/z* (%) = 232 (100) [M⁺], 217 (50) [M⁺ – Me].

$$C_{11}H_{19}B_2PSi$$
 (231.9) Ber. C 56.96 H 8.25 P 13.35
Gef. C 57.00 H 8.33 P 13.23

2,5-Bis(diisopropylamino)-2,5-dihydro-1,2,5-oxadiborol (10): Durch eine Lösung von 780 mg (2.19 mmol) 1c in 20 ml Toluol wird 2 h getrocknete Luft geperlt, dann das Lösungsmittel i. Vak. entfernt und das Rohprodukt bei 90 °C/10⁻³ Torr sublimiert: 259 mg (0.98 mmol, 44%) farblose Kristalle, Schmp. 126–128 °C. – ¹H-NMR (90 MHz, C₆D₆): $\delta = 1.65$ (d, 12, CH₃, ³J_{HH} = 7.0 Hz), 1.93 (d, 12, CH₃, ³J_{HH} = 7.0 Hz), 3.86 (sept, 2, NCH, ³J_{HH} = 7.0 Hz), 4.00 (sept, 2, NCH, ³J_{HH} = 7.0 Hz), 6.95 (s, 2, =CH). – ¹¹B-NMR (C₆D₆): $\delta = 36.7$ (s). – MS (EI): m/z (%) = 264 (10) [M⁺], 249 (100) [M⁺ – Mc], 43 (15) [Pr⁺].

$$\begin{array}{rrrr} C_{14}H_{30}B_2N_2O~(264.0) & \mbox{Ber.} C~63.63~H~11.36~N~10.60\\ & \mbox{Gef.} C~63.55~H~11.30~N~10.48 \end{array}$$

2,5-Bis(diisopropylamino)-2,5-dihydro-1,2,5-thiadiborol (11): Zu einer Lösung von 682 mg (1.9 mmol) 1c in 10 ml Toluol werden 61 mg S₈ (0.23 mmol) gegeben. Die Suspension wird so lange unter Rückfluß erhitzt, bis eine klare Lösung entsteht. Nach Abkühlen fällt das Rohprodukt aus, das bei -30 °C aus CH₂Cl₂ umkristallisiert wird; 465 g (1.66 mmol, 87%) farblose Kristalle, Schmp. $173-174^{\circ}C. - {}^{1}H-NMR$ (90 MHz, C₆D₆): $\delta = 1.79$ (d, 12, CH₃, ${}^{3}J_{HH} = 7.0$ Hz), 1.87 (d, 12, CH₃, ${}^{3}J_{HH} = 7.0$ Hz), 3.5 (sept, 2, NCH, ${}^{3}J_{HH} = 7.0$ Hz), 4.31 (sept, 2, NCH, ${}^{3}J_{HH} = 7.0$ Hz), 7.16 (s, 2, = CH). $- {}^{11}B-NMR$ (C₆D₆): $\delta = 42.4$ (s). - MS (EI): m/z (%) =280 (22) [M⁺], 265 (100) [M⁺ - Me], 223 (11) [M⁺ - Me - Pr], 43 (29) [Pr⁺].

$\begin{array}{c} C_{14}H_{30}B_2N_2S \ (280.1) \\ \text{Gef.} \ C \ 60.02 \ H \ 10.79 \ N \ 10.00 \\ \text{Gef.} \ C \ 60.00 \ H \ 10.55 \ N \ 9.88 \end{array}$

2,5-Bis (diisopropylamino)-2,5-dihydro-1,2,5-selenadiborol (12): Zu einer Lösung von 682 mg (1.9 mmol) 1c in 10 ml Toluol werden 151 mg Se₈ (0.47 mmol) gegeben. Die Suspension wird unter Rückfluß erhitzt, bis eine klare Lösung entsteht. Solange noch elementares Se vorhanden ist, liegt eine tiefgrüne Lösung vor. Nach Abkühlen fällt das Rohprodukt aus, das bei -30 °C aus CH₂Cl₂ umkristallisiert wird: 510 mg (1.55 mmol, 82%) farblose Kristalle, Schmp. 185–186 °C. – ¹H-NMR (90 MHz, C₆D₆): $\delta = 1.49$ (br. d, 24, CH₃, ³J_{HH} = 6.8 Hz), 3.80 (sept, 2, NCH, ³J_{HH} = 6.8 Hz), 4.39 (sept, 2, NCH, ³J_{HH} = 6.8 Hz), 7.42 (br, 2, = CH). – ¹¹B-NMR (C₆D₆): $\delta = 43.6$ (s). – MS (EI): m/z (%) = 328 (38) [M⁺], 313 (100) [M⁺ – Me], 285 (8) [M⁺ – Pr], 271 (21) [M⁺ – NPr], 43 (61) [Pr⁺].

$$C_{14}H_{30}B_2N_2Se$$
 (327.0) Ber. C 51.37 H 9.17 N 8.56
Gef. C 50.99 H 9.10 N 8.44

Addukt 13: Zu einer Lösung von 3.67 mg (1.03 mmol) 1 c in 10 ml *n*-Pentan werden bei -78 °C 124.7 mg (1.03 mmol) Me₂BBr in 5 ml *n*-Pentan gegeben. Es wird erwärmt und alles Leichtflüchtige bei

	4c	5c	9a	9Ъ	15
Formel	C ₂₀ H ₃₀ B ₂ F ₅ N ₂ P	C ₃₂ H ₅₉ B ₂ N ₂ P	C ₁₈ H ₃₃ B ₂ N ₂ P	C ₁₁ H ₁₉ B ₂ SiP	C ₂₃ H ₃₅ B ₂ FeN ₂ O ₃ P
Molmasse	446.06	524.43	330.7	231.9	496.0
Kristallsvstem	triklin	monoklin	monoklin	monoklin	monoklin
Raumgruppe	PĪ	C2/c	P21/c	C2/c	P2 ₁ /a
Zellparameter	a=10.286(6)	a=39.032(15)	a=12.043(13)	a=19.622(3)	a=16.785(4)
[A] und [°]	b=10.349(6)	b=10.910(5)	b=11.264(13)	b= 8.110(1)	b=11.108(3)
[]	c=12.129(5)	c=18.672(8)	c=15.467(19)	c=18.279(3)	c=15.402(4)
	a = 67.96(4)	a= 90.0	a= 90.0	a= 90.0	a= 90.0
	$\beta = 85.02(4)$	B=117.78(4)	B= 97.37(9)	β=101.26(1)	β=102.39(3)
	x = 84.01(4)	x= 90.0	x= 90.0	x= 90.0	ہ = 90.0
Zellvolumen[Å3]	1189	7035	2081	2851	2805
7.	2	8	4	8	4
dram [α cm−3]	1.25	0.99	1.00	1.08	1.17
u(Mo-Ka) [cm ⁻¹]	1.2	0.7	1.0	2.1	5.7
Kristallaröße[mm]	0.2.0.5.0.6	0.3.0.5.0.6	0.3.0.5.0.7	0.2.0.3.0.6	0.5.0.6.0.7
Transmissionsber.	0.85-0.99	0.94-1.00	0.72-1.00	0.88-1.00	0.71-0.77
20-0- [0]	46.0	50.0	50.0	50.0	50.0
Reflexe					
demessen	3313	6533	3858	4922	4923
heohachtet	1693 (I)2σr)	2374 (I>2g1)	1970 (I>2σ ₁)	2906 (I>2σ _I)	4032 (I> σ _I)
Verfeinerung	1000 (1.101)				
anisotrop	P. F. N. C. B	P, N, C, B	P, N, C, B	P, N, C, B	Fe, P, N, O, C, B
isotrop	H	Н	Н	Н	н
Zahl der Paramete	r 305	391	237	212	442
R	0.058	0.078	0.080	0.042	0.046
 Rw	0.054	0.062	0.096	0.051	0.041
max.Restelektro-					
nendichte [e 4-3]	0.3	0.3	0.4	0.2	0.3

Tab. 1. Einzelheiten zu den Kristallstrukturanalysen

Tab. 2. Atomparameter von **4c**; \bar{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	Z	<u> </u>
B1 P2	0.5672(6) 0.37988(14)	-0.0228(7)	0.6770(5) 0.65596(13)	0.046
B3	0.3682(6)	0.1762(6)	0.6730(5)	0.048
C4	0.5084(6)	0.2263(7)	0.6409(5)	0.063
C5	0,6055(7)	0.1295(6)	0.6410(5)	0.064
Nl	0.6465 (4)	-0.1468(4)	0.7132(4)	0.047
C11	0.7870(5)	-0.1532(6)	0.7321(5)	0.065
C12	0.8687(6)	-0.0856(7)	0.6165(6)	0.088
C13	0.8112(7)	-0.0969(8)	0.8267(6)	0.092
C14	0.5961(5)	-0.2824(5)	0.7370(5)	0.056
C15	0.6680(7)	-0.3593(6)	0.6598(6)	0.079
C16	0.5947(6)	-0.3751(6)	0.8689(5)	0.075
N2	0.2549(4)	0.2473(4)	0.6999(4)	0.049
C21	0.2543(6)	0.3835(6)	0.7137(6)	0.066
C22	0.2818(7)	0.5024(6)	0.5970(6)	0.090
C2 3	0.3417(7)	0.3750(7)	0.8105(6)	0.090
C24	0.1258(5)	0.1896(6)	0.7202(5)	0.062
C25	0.0249(6)	0.2865(7)	0.6357(6)	0.089
C26	0.0761(6)	0.1487(7)	0.8505(6)	0.082
C31	0.3058(5)	-0.1256(5)	0.7956(6)	0.047
C32	0.2192(6)	-0.2172(6)	0.7945(7)	0.062
C33	0.1606(7)	-0.3074(7)	0.8937(11)	0.088
C34	0.1865(9)	~0.3126(9)	1.0011(9)	0.102
C35	0.2714(8)	-0.2256(8)	1.0104(7)	0.082
C36	0.3316(6)	-0.134/(6)	0.9077(7)	0.063
F1	0.1888(4)	-0.2159(4)	0.6881(4)	0.100
r2 52	0.0754(4)	-0.3932(4)	0.0022(5)	0.149
r J FA	0.1296(4)	-0.4022(4)	1,1101(5)	0.152
r4 55	0.299/(5)	-0.2326(5)	$1 \cdot 1 \cdot 0 \cdot (4)$	0.132
ro	0.4141(4)	-0.0521(4)	0.9219(3)	0.089

Tab. 3. Atomparameter von **5c**; \bar{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	2	<u> </u>
Bl	0.16727(17)	0.2957(6)	0.3039(4)	0.037
P2	0.15300(4)	0.20791(14)	0.20379(9)	0.036
B3	0.19531(17)	0.0922(6)	0.2549(4)	0.041
C4	0.22201(16)	0.1520(6)	0.3394(3)	0.053
C5	0.20875(16)	0.2477(5)	0.3631(3)	0.045
C6	0.10046(14)	0.1679(4)	0.1488(3)	0.029
C7	0.07839(15)	0.2277(5)	0.0728(3)	0.036
C8	0.03851(15)	0.2377(5)	0.0429(3)	0.041
C9	0.01849(15)	0.1902(5)	0.0810(3)	0.041
C10	0.04000(16)	0.1216(5)	0.1491(3)	0.044
C11	0.07964(15)	0.1051(5)	0.1838(3)	0.037
C12	0.09478(15)	0.2864(6)	0.0184(3)	0.046
C13	0.12483(17)	0.2040(6)	0.0109(4)	0.066
C14	0.11196(19)	0.4140(6)	0.0502(4)	0.072
C15	0.06248(18)	0.3052(7)	-0.0699(3)	0.076
C16	-0.02493(16)	0.2086(7)	0.0492(4)	0.054
C17	-0.0326(2)	0.2738(10)	0.1092(6)	0.160
C18	-0.0430(2)	0.2801(11)	-0.0282(5)	0.147
C19	-0.0458(2)	0.0876(8)	0.0305(7)	0.148
C20	0.09678(16)	0.0158(6)	0.2571(4)	0.047
C21	0.1193(3)	0.0768(7)	0.3379(4)	0.104
C22	0.1226(2)	-0.0785(6)	0.2443(5)	0.099
C23	0.0659(2)	-0.0652(7)	0.2628(5)	0.096
NI	0.14747(12)	0.3910(4)	0.3175(3)	0.040
NZ COA	0.20385(12)	-0.0092(4)	0.2211(3)	0.046
024	0.11026(16)	0.4385(6)	0.2526(4)	0.049
025	0.07637(18)	0.4190(7)	0.2711(4)	0.077
C20	0.1137(2) 0.16153(17)	0.5722(6)	0.2323(3)	0.088
C29	0.16153(17)	0.4554(6)	0.3902(4)	0.054
C20	0.1000(2)	0.5092(0)	0.4040(4)	0.071
C30	0.17824(17)	-0.0521(-6)	0.4174(4) 0.1371(4)	0.059
C31	0.1667(2)	-0.1868(6)	0.1323(5)	0.039
C32	0.1958(2)	-0.0244(8)	0.0813(4)	0.090
C33	0.24050(18)	-0.0803(6)	0.2613(4)	0.067
C34	0.27636(18)	-0.0031(7)	0.2777(5)	0.088
C35	0.2445(2)	-0.1447(7)	0.3372(5)	0.101

30°C/10⁻² Torr entfernt. Der Rückstand wird in 5 ml Toluol aufgenommen und die Lösung bei -78° zur Kristallisation belassen: 310 mg (0.65 mmol, 63%) farblose nadelartige Kristalle, Schmp. >195°C (Zers.). $-^{1}$ H-NMR (90 MHz, CDCl₃): δ = 1.12 (br, 6, BCH₃), 1.82 (br, 12, N-C-CH₃), 2.01 (d, 12, N-C-CH₃, ³J_{HH} = 7.0 Hz), 3.66 (dsept, 2, NCH, ⁴J_{PH} = 2.3, ³J_{HH} = 7.0 Hz), 4.06 (dsept, 2, NCH, ⁴J_{PH} < 1, ³J_{HH} = 7.0 Hz), 7.16-7.33 (m, 5, C₆H₅), 7.56 (d, 2, =CH, ³J_{PH} = 14.0 Hz). $-^{11}$ B-NMR (CDCl₃): δ = -3.3(s), 39.5 (s). $-^{31}$ P{¹H}-NMR (CDCl₃): δ = -75.2 (br).

$$\begin{array}{cccc} C_{22}H_{41}B_{3}BrN_{2}P \ (476.3) & Ber. \ C \ 55.43 \ H \ 8.60 \ P \ 6.50 \\ & Gef. \ C \ 55.01 \ H \ 8.44 \ P \ 6.77 \end{array}$$

2,5-Bis (diisopropylamino)-2,5-dihydro-1-methyl-1H-1,2,5-phosphadiborol (14a): Zu einer Lösung von 2.53 g (9.0 mmol) 3c in 20 ml Et₂O wird bei -10 °C langsam eine Lösung von 9.0 mmol MeLi in Et₂O getropft, wobei sich die Lösung intensiv gelb färbt. Es wird 3 h bei Raumtemp. gerührt, dann das Lösungsmittel i. Vak. entfernt: 2.58 g geringfügig verunreinigtes [3c-H]Li. - ¹¹B-NMR (C₆D₆): $\delta = 45.8$ (s), Schulter bei 41.3. - ³¹P{¹H}-NMR (162 MHz, C₆D₆): $\delta = -266.6$ (br). - ⁷Li-NMR (155 MHz, C₆D₆): $\delta = 3.45$ (br).

Zu einer Lösung von 1.27 g [3c-H]Li (4.44 mmol) in 50 m THF wird bei - 78 °C eine Lösung von 630 mg (4.44 mmol) MeI in 20 ml n-Pentan gegeben. Nach 30 min wird auf Raumtemp. erwärmt und weitere 30 min gerührt. Der entstandene Niederschlag wird abgefiltert und das Lösungsmittel i. Vak. entfernt. Durch Sublimation bei $62-68 \degree C/5 \cdot 10^{-3}$ Torr erhält man einen blaßgelben Feststoff, der aus CH₂Cl₂ bei - 30°C umkristallisiert wird: 810 mg (2.7 mmol, 62%) hellgelbe Kristalle, Schmp. 129-131 °C. - ¹H-NMR (200 MHz, C₆D₆): $\delta = 1.04$ (d, 12, N – C – CH₃, ³J_{HH} = 6.7 Hz), 1.26 (d, 12, N – C – CH₃, ${}^{3}J_{HH} = 6.7$ Hz), 1.33 (d, 3, PCH₃, ${}^{2}J_{PH} = 18.9$ Hz), 3.08 (dsept, 2, NCH, ${}^{4}J_{PH} = 1.1$, ${}^{3}J_{HH} = 6.7$ Hz), 4.27 (dsept, 2, NCH, ${}^{4}J_{PH} = 3.6$, ${}^{3}J_{HH} = 6.7$ Hz), 7.68 (d, 2, =CH, ${}^{3}J_{PH} =$ 5.7 Hz). $-{}^{13}C{^{1}H}$ -NMR (C₆D₆): $\delta = 22.08$ (s, N-C-C), 25.92 (s, N-C-C), 41.28 (s, NC), 50.88 (d, NC, ${}^{3}J_{PC} = 7.0$ Hz), 158.4 (br, BC), PC nicht gefunden. $-{}^{11}$ B-NMR (C₆D₆): $\delta = 47.6$ (s). - ${}^{31}P{}^{1}H{-}NMR$ (C₆D₆): $\delta = -175.4$ (s).

Tab. 4. Atomparameter von **9a**; \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	Z	ប
B1	0,6562(6)	0.1674(7)	0.8029(5)	0.047
P2	0.68417(14)	0.09555(19)	0.69374(11)	0.054
B3	0.8343(6)	0.0584(7)	0.7462(5)	0.048
C4	0.8220(5)	0.0321(6)	0.8456(4)	0.049
C5	0.7259(5)	0.0855(6)	0.8737(4)	0.051
C6	0.8838(6)	-0.0495(7)	0.8997(5)	0.068
C7	0.8540(6)	-0.0807(7)	0.9797(5)	0.070
C8	0.7608(6)	-0.0295(7)	1.0085(5)	0.075
C9	0.6981(6)	0.0530(7)	0.9553(5)	0,065
Nl	0.5881(4)	0.2613 (5)	0.8176(3)	0.051
C10	0.5115(6)	0.3260(6)	0.7488(5)	0.062
C11	0.5733(6)	0.4041(7)	0.6904 (5)	0.074
C12	0.4284(6)	0.2484 (7)	0.6977(5)	0.081
C13	0.5846(6)	0.3091(7)	0.9074 (4)	0,067
C14	0.6129(7)	0.4383(7)	0.9165(5)	0.084
C15	0.4704 (6)	0.2799 (8)	0.9375 (5)	0.086
N2	0.9314(4)	0.0461(5)	0.7047(3)	0.055
C16	0.9315(5)	0.0393(7)	0.6094(4)	0.061
C17	0.8605(6)	-0.0656(7)	0.5724(5)	0.076
C18	0.9014(6)	0.1555(8)	0.5613(5)	0.082
C19	1.0449 (5)	0.0340(7)	0.7561(5)	0,063
C20	1.0959(6)	-0.0884(7)	0.7452(6)	0.086
C21	1.1259(6)	0.1319(7)	0.7348(5)	0.082

1-(Chlordimethylsilyl)-2,5-bis(diisopropylamino)-2,5-dihydro-1H-1,2,5-phosphadiborol (14b): 250 mg [3c-H]Li (0.87 mmol) und 112 mg (0.87 mmol) Me₂SiCl₂ werden in 10 ml THF bei -78°C zusammengegeben und auf Raumtemp. erwärmt. Der entstandene Niederschlag (LiCl) wird abgefiltert und das Lösungsmittel i. Vak. entfernt. Der Rückstand wird bei -78°C aus 2 ml n-Pentan kristallisiert: 223 mg (0.66 mmol, 76%) hellgelbe Kristalle, Schmp. $74-76^{\circ}C. - {}^{1}H-NMR$ (200 MHz, C₆D₆): $\delta = 1.28$ (d, 6, SiCH₃, ${}^{3}J_{\rm PH} = 2.5$ Hz), 1.65 (d, 12, N-C-CH₃, ${}^{3}J_{\rm HH} = 6.5$ Hz), 1.79 (d, 12, N-C-CH₃, ${}^{3}J_{HH} = 6.5$ Hz), 3.57 (dsept, 2, NCH, ${}^{4}J_{PH} = 2.1$, ${}^{3}J_{\rm HH} = 6.5$ Hz), 4.79 (sept, 2, NCH, ${}^{3}J_{\rm HH} = 6.5$ Hz), 7.59 (d, 2, =CH, ${}^{3}J_{PH} = 5.4$ Hz). $- {}^{13}C{}^{1}H{}-NMR$ (C₆D₆): $\delta = 7.53$ (d, SiCH₃, ${}^{2}J_{PC} = 4.5$ Hz), 21.67 (s, N-C-C), 25.95 (s, N-C-C), 46.08 (s, NC), 57.12 (d, NC, ${}^{3}J_{PC} = 18.1$ Hz), 159.7 (br, BC). $-{}^{11}B$ -NMR (C₆D₆): $\delta = 45.9$ (s). $-{}^{31}P{}^{1}H{}-NMR$ (C₆D₆): $\delta = -228.6$ (s). -MS (EI): m/z (%) = 372 (19) [M⁺], 329 (42) [M⁺ - Pr], 279 (22) $[M^+ - SiMe_2Cl]$, 237 (50) $[M^+ - SiMe_2Cl - Pr]$, 43 (100) [Pr⁺].

Umsetzung von [3c-H]Li mit Me₃SiCl zu 2c: 250 [3c-H]Li (0.87 mmol) und 94 mg (0.87 mmol) Me₃SiCl werden in 10 ml THF bei -78 °C zusammengegeben und auf Raumtemp, erwärmt. Der entstandene Niederschlag (LiCl) wird abgefiltert, das Lösungsmittel i. Vak. entfernt und der Rückstand bei -78°C aus 2 ml n-Pentan kristallisiert: 179 mg (0.71 mmol, 58%) farblose Kristalle, Schmp. 92-93°C.

Spaltung von 2b mit MeOH: Zu 1.45 g (4.9 mmol) 2b in 20 ml n-Pentan bei - 78°C werden langsam 147 mg (4.9 mmol) MeOH in 5 ml n-Pentan gegeben. Es wird 1 h gerührt, dann das Lösungsmittel bei 20 Torr entfernt und das verbleibende Öl i. Vak. destillativ aufgearbeitet: 1. Fraktion: 64°C/20 Torr, 210 mg (1.9 mmol, 40%) H₂PSiMe₃, 2. Fraktion: 80-82 °C/0.1 Torr, 605 mg (2.3) mmol, 48%) 1,2-Bis[(diethylamino)methoxyboryl]ethen. - ¹H-NMR (90 MHz, C_6D_6): $\delta = 1.21$ (t, 6, CH_3 , ${}^3J_{HH} = 7.0$ Hz), 1.36 (t, 6, CH₃, ${}^{3}J_{HH} = 7.0$ Hz), 3.50 (q, 4, NCH₂, ${}^{3}J_{HH} = 7.0$ Hz), 3.66 $(q, 4, NCH_2, {}^{3}J_{HH} = 7.0 Hz), 3.81 (s, 6, OCH_3), 5.90 (br, 2, = CH). -$ ¹¹B-NMR (C₆D₆): $\delta = 27.9$ (s). – Aus dem Destillationsrückstand lassen sich 500 mg (1.7 mmol, 35%) 2b zurückgewinnen.

[2,5-Bis(diisopropylamino)-2,5-dihydro-1-phenyl-1H-1,2,5-phosphadiborol/tricarbonyleisen (15): Eine Lösung von 270 mg (0.76 mmol) 1c in 15 ml THF wird mit einer Spritze auf 280 mg (0.76 mmol) feinpulverisiertes Fe₂(CO)₉ gegeben. Die Suspension wird kurz erwärmt, bis unter lebhafter CO-Entwicklung eine klare, orange Lösung entsteht. Nach Entfernen des Lösungsmittels i. Vak.

Tab. 5. Atomparameter von $(9b)_2$; \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	Z	ប
B1	0 5/9/8/11)	-0 0976(2)	0 05448(11)	0 047
51	0.34940(11)	0.02109(6)	0.05493(11)	0.047
B3	0.50248(11)	0.1974(3)	0.11829(11)	0.050
C4	0.58135(9)	0.1660(2)	0.13548(9)	0.052
C5	0.60466(8)	0.0192(2)	0.10681(9)	0.048
C6	0.67587(11)	-0.0184(3)	0.12486(11)	0.062
C7	0.72200(11)	0.0851(4)	0.16990(12)	0.073
C8	0.69995(12)	0.2288(4)	0.19672(12)	0.078
C9	0.63040(11)	0.2710(3)	0.18008(11)	0.068
C10	0.55759(13)	-0.2921(3)	0.06753(14)	0.069
C11	0.46223(15)	0.3433(3)	0.14529(15)	0.072
si1	0.37010(2)	-0.09628(7)	0.09566 (3)	0.051
C13	0.29747(13)	0.0536(4)	0.0864(2)	0.080
C14	0.34560(11)	-0.2827(3)	0.03720(12)	0,062
C15	0.40171(14)	-0.1557(5)	0.19477(13)	0.080

Tab. 6. Atomparameter von 15; \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	Z	ប
Fel	0.23427(2)	0.04877(3)	0.76973(2)	0.053
B1	0.36476(17)	0.0843(3)	0.88700(17)	0.052
P2	0.36956(4)	0.07862 (5)	0.76400(4)	0.047
B3	0.34917(16)	-0.0886(2)	0.74065(17)	0.049
C4	0.30206(15)	-0.1092(2)	0.81373(16)	0.058
C5	0.30944(15)	-0.0254(2)	0.88541(15)	0.057
C6	0.40829(14)	0.1893(2)	0.69794(14)	0.050
C7	0.35738(17)	0.2722 (3)	0.64850(18)	0.071
C8	0.3877(2)	0.3572(3)	0.59800(19)	0.090
C9	0.4684(3)	0.3579(3)	0.5967(2)	0.090
C10	0.51955(19)	0.2762(3)	0.6454(2)	0.089
C11	0.49052(16)	0.1918(3)	0.69621(18)	0.071
C12	0.21389(16)	0.1994(3)	0.79586(19)	0.074
C13	0.19919(15)	0.0404(2)	0.65289(19)	0.067
C14	0.14594(19)	-0.0131(3)	0.7963(2)	0.089
01	0.19799(15)	0.2970(2)	0.81055(17)	0.122
02	0.17529(13)	0.0401(2)	0.57732(13)	0.099
03	0.08871(14)	-0.0535(3)	0.81449(19)	0.144
N1	0.39575(13)	0.17042(18)	0.95105(12)	0.063
C15	0.3797(2)	0.1685(3)	1.04159(18)	0.085
C16	0.4178(3)	0.0595(3)	1.0934(2)	0.122
C17	0.2901(3)	0.1812(3)	1.0398(2)	0.122
C18	0.4466(2)	0.2706(3)	0.93229(19)	0.086
C19	0.5312(2)	0.2737(3)	0.9927(3)	0.129
C20	0.4049(3)	0.3914(3)	0.9308(3)	0.125
N2 (221	0.36456(12)	-0.16189(1/)	0.67250(13)	0.058
C21	0.4110(2)	-0.118/(3)	0.6086(2)	0.081
022	0.3014(3)	-0.1139(0)	0.5140(3)	0.110
C23	0.4910(3)	-0.10/4(/)	0.0148(4)	0.130
C24 C25	0.3335(2)	-0.2001(3)	0.0009(2)	0.077
C25	0.3/10(4)	-0.3055(4)	0.7410(3)	0.100
C20	0.2445(3)	-0.2902(4)	0.0000(3)	0.103

wird der Rückstand aus PE (40-60°C) bei -78°C kristallisiert: 260 mg (0.53 mmol, 70%) goldgelbe Kristalle, Schmp. 158-160 °C (Zers.). Die Substanz zersetzt sich bei Raumtemp. in Lösung langsam. $-^{1}$ H-NMR (90 MHz, C₆D₆): $\delta = 0.4 - 1.1$ (m, 24, CH₃), 2.4-3.2 (m, 6, NCH), 7.1-7.9 (m, 7, =CH, C_6H_5). - ¹¹B-NMR (C₆D₆): δ = -19.5 (s). - MS (EI): m/z (%) = 440 (1) [M⁺ -2CO, 412 (10) [M⁺ - 3CO], 86 (80) [C₆H₁₂], 44 (100) [C₃H₈⁺]. -IR [v(CO)] (PE 40-60°C): 2030, 1930, 1903 cm⁻¹.

C₂₃H₃₅B₂FeN₂O₃P (496.0) Ber. C 55.70 H 7.06 Fe 11.32 Gef. C 54.32 H 5.78 Fe 11.08

Röntgenstrukturanalysen^[12]: Tab. 1 enthält Einzelheiten zu den Kristallstrukturanalysen von 4c, 5c, 9a, (9b), und 15, in Tab. 2-6 sind die Atomparameter wiedergegeben. Die Intensitäten für 15 wurden mit einem Zweikreisdiffraktometer (Mo- K_{α} -Strahlung, ω -Scan), für die übrigen mit einem Vierkreisdiffraktometer (Mo-K₂-Strahlung, ω-Scan) gemessen. Die Strukturlösung erfolgte mit direkten Methoden bzw. für 15 mit der Schweratommethode. Wasserstoffatome wurden zum Teil in gefundenen Lagen (9b und 15) verfeinert, ansonsten in berechneten Lagen oder als Teil einer starren Gruppe (CH₃) eingegeben. Alle Rechnungen wurden mit den Programmen SHELX76 und SHELXS86^[13] durchgeführt.

^[1] M. Drieß, H. Pritzkow, W. Siebert, Angew. Chem. 1987, 99, 789;

 ^[2] ^[2a] P. Binger, Angew. Chem. 1967, 26, 781.
^[2] ^[2a] P. Binger, Angew. Chem. 1968, 80, 288; Angew. Chem. Int. Ed. Engl. 1968, 7, 286. – ^[2b] R. Full, W. Siebert, J. Organomet. Chem. 1977, 131, 1. – ^[2c] W. Siebert, Pure Appl. Chem. 1987, 59, 947. – ^[2d] W. Siebert, R. Full, H. Schmidt, J. v. Seyerl, M. Hubberg, C. Hubberg, C. Hubberg, Chem. Chem. Chem. 1990, 59, 147. Halstenberg, G. Huttner, J. Organomet. Chem. 1980, 191, 15

^[3] W. Siebert, Angew. Chem. 1985, 97, 924; Angew. Chem. Int. Ed. Engl. 1985, 24, 943

^[4] M. Drieß, P. Frankhauser, H. Pritzkow, W. Siebert, Chem. Ber. 1991, 124, 1497.

- ^[5] M. Drieß, P. Frankhauser, H. Pritzkow, W. Siebert, Angew. Chem. 1989, 101, 219; Angew. Chem. Int. Ed. Engl. 1989, 28, 217.
 ^[6] M. Drieß, H. Pritzkow, W. Siebert, Chem. Ber. 1989, 122, 467.
- ⁽¹⁾ C. J. Jameson, Theoretical Considerations: Spin-Spin Coupling in Phosphorus-31 NMR Spektroscopy in Stereochemical Analysis (Hrsg.: J. G. Verkade, L. D. Quin), Verlag Chemie, Weinheim, 1987, Bd. 8, S. 227.
- ^[8] M. Drieß, Dissertation, Universität Heidelberg, 1988.
- [9] J. Sandström, Dynamic NMR Spectroscopy, Adademic Press, London, 1982, S. 93.
- ^[10] R. D. Beachler, K. Mislow, J. Am. Chem. Soc. 1970, 92, 3090.
- ^[11] R. A. Bartlett, X. Feng, P. P. Power, J. Am. Chem. Soc. 1986, 108, 6817.
- ^[12] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56252, der Autoren und des Zeitschriftenzitates angefordert werden.

^[13] G. M. Sheldrick, SHELX76, Program for Crystal Structure Determination, University of Cambridge, 1976; SHELXS86, Universität Göttingen, 1986.

[472/91]

CAS-Registry-Nummern

1a: 109530-97-4 / 1b: 109530-96-3 / 1c: 109530-95-2 / 2b: 135735-76-1 / 2c: 135735-77-2 / 3a: 139914-83-3 / 3b: 135735-74-9 / 3c: 135735-75-0 / 4c: 139914-84-4 / 5c: 139914-85-5 / 6a: 109530-94-1 / 6b: 109530-93-0 / 6c: 109530-92-9 / 8a: 139914-97-7 / 8b: 139914-95-7 / 9a: 139914-88-8 / 9b: 139914-96-8 / (9b)₂: 139914-89-9 / 11: 139914-90-2 / 12: 139914-91-3 / 13: 139914-92-4 / 14a: 139914-93-5 / 14b: 139914-97-9 / 15: 139914-94-6 / C₆H₃PL₁₂: 13595-56-7 / [LiPH₂ · DME]: 62263-24-5 / C₆F₃PH₂: 13648-86-7 / NaN(SiMe₃)₂: 1070-89-9 / C₆H₂(tBu)₃PH₂: 83115-12-2 / P(SiMe₃)₃: 15573-38-3 / Me₂BBr: 5158-50-9 / Me₂SiCl₂: 75-78-5 / Fe₂(CO)₉: 15321-51-4